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LETTER TO THE EDITOR

The Jacobi eigenfunctions and the quantum mechanical
hypervirial theorems method for bound-state problems

T E Liolios and M E Grypeos
Department of Theoretical Physics, University of Thessaloniki, Thessaloniki 54006, Greece

Received 23 December 1996

Abstract. The Jacobi eigenfunctions are suitably adjusted by means of the hypervirial theorems
(HVT) scheme in order to obtain, in many cases, a very satisfactory analytic approximation of
the s-state eigenfunctions of the radial Gaussian potential. The results obtained show that the
HVT scheme is a powerful method for obtaining (analytically) not only approximate eigenvalues
but also the corresponding eigenfunctions.

The transformed Jacobi eigenequation can be used to approximately solve the Schrödinger
eigenvalue problem for the Gaussian potentialV (r) = −V0 exp(−r2/R2) which has been
used as a model in the theory of nucleon–nucleon scattering [1] as well as in numerous
other applications in physics. Bessiset al [2] applied the Rayleigh–Schrödinger perturbation
method to the Gaussian potential, observing that the Jacobi eigenfunctions (that is the
solutions of the transformed Jacobi eigenequation) can provide a first approximation to the
eigenfunctions of the radial Gaussian potential. Of course one can always find numerical
eigenfunctions for that potential but the importance of the analytic ones must not be
underestimated. After all, a lot of effort has been made in literature in solving eigenvalue
problems analytically since they provide a means of seeing transparently how various
quantities vary with respect to the potential parameters.

In the present letter we show that a very handy analytic approximation to the s-state
eigenfunctions of the Gaussian potential can be accomplished by imposing a suitable
constraint on the Jacobi eigenfunctions through the hypervirial theorems (HVT) scheme
[3–10].

The Schr̈odinger eigenvalue problem for the radial Gaussian potential is[
h̄2

2µ

d2

dr2
− h̄2

2µ

l(l + 1)

r2
+ V0 e−r

2/R2 + E
]
unl = 0 (1)

unl(0) = 0 unl(∞) = 0.

By settingx = r/R, equation (1) becomes[
d2

dx2
− l(l + 1)

x2
+ s−2 e−x

2 + Ẽ
]
unl = 0 (2)

unl(0) = 0 unl(∞) = 0

where

s =
(
h̄2

2µ

1

V0R2

)1
2

and Ẽ = s−2 E

V0
.
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The problem of the determination of the energy eigenvalues in equation (1) has been
handled by the (HVT) scheme [7, 10, 11], which yielded satisfactory results especially for
the ground and the lower excited states. Moreover, the expression for the mean-square
radii 〈r2〉nl have been derived [10] for the Gaussian potential, and can be written as a
dimensionless function ofs as follows [11]:( 〈r2〉nl
R2

)
G

= anls + 1

16
[12a2

nl − 4l(l + 1)+ 3]s2+ 3anl
256

[60a2
nl − 28l(l + 1)+ 45]s3+ · · · .

(3)

Equation (2) resembles the transformed Jacobi eigenequation, with the same boundary
conditions, which reads as[

d2

dx2
− l(l + 1)

sinh2(x)
+ s−2

cosh2(x)
+ Ẽ

]
unl = 0 (4)

and can be thought of, in turn, as a Schrödinger equation for the potential

VJ (x) = −
[

s−2

cosh2(x)
− l(l + 1)

sinh2(x)
+ l(l + 1)

x2

]
. (5)

For the above transformed Jacobi eigenequation the eigenfunctions are [2, 13]

unl = Nnl(sinhx)l+1(coshx)p+1/2P (l+1/2,p)
n (cosh(2x)) (6)

with

Nnl =
[

2−p−l−1/2(−p − anl)0(n+ 1)0(−p − n)
0(n+ l + 3/2)0(−p − n− l − 1/2)

]1
2

(7)

whereanl = 2n+ l + 3/2 andp = −
√
s−2+ 1

4.

The corresponding energy eigenvaluesẼ are given simply by

Ẽ = Ẽnl = −
[
anl −

√
1

s2
+ 1

4

]2

. (8)

The problem of the radial Schrödinger eigenvalue problem of the Poeschl–Teller-type
potential [12],(VPT = −V0 cosh−2(r/R)),[

d2

dx2
− l(l + 1)

x2
+ s−2 cosh−2(x)+ Ẽnl

]
unl = 0 (9)

unl(0) = 0 unl(∞) = 0

has been treated by means of the HVT scheme for any bound state [10]. In fact, apart from
the series for the energy eigenvalues, a series for the mean-square radii has been obtained
which, as in the case of the Gaussian potential, can be written in the dimensionless form( 〈r2〉nl
R2

)
PT

= anls + 1

12
[12a2

nl − 4l(l + 1)+ 3]s2+ anl
90

[85a2
nl − 36l(l + 1)+ 50]s3+ · · · .

(10)

One can easily observe that for the s-states(l = 0) equations (4) and (9) are in
fact identical and the Jacobi eigenfunction coincides with that of the Poeschl–Teller-type
potential. Unfortunately this is not the case for the Gaussian Schrödinger equation (2),
which is not exactly solvable even for the ground state.

It has been recently [11] suggested that such cumbersome cases can be handled using
a convenient analytic approximation of the wavefunction (composed of an interior and an
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exterior part) suitably adjusted. In this work we follow the same general idea by considering
the Jacobi eigenfunction and applying the following constraint:( 〈r2〉n0

R2

)
G

≈
( 〈r2〉n0

R2

)
Jacobi

=
( 〈r2〉n0

R2

)
PT

. (11)

Note that the present approach leads to much more satisfactory results.
Thus one can obtain ans0 which suitably adjusts thenth s-state Jacobi eigenfunction

to approximate the corresponding eigenfunction of the Gaussian potential by solving the
equation

an0s0+
[
a2
n0+

1

4

]
s2

0 +
an0

90
[85a2

n0+ 50]s3
0 = gn0 (12)

where

gn0 = an0s + 1

16
[12a2

n0+ 3]s2+ 3an0

256
[60a2

n0+ 45]s3. (13)

(Note thats is of course calculated with respect to the Gaussian potential parameters.)
Alternatively one could use the formulae of the analytic solution of cubic equations:

s0 = S + T − 1
3b1 (14)

S = (W +
√
Q3+W 2)

1
3 T = (W −

√
Q3+W 2)

1
3 (15)

Q = 3b2− b2
1

9
W = 9b1b2− 27b3− 2b3

1

54
(16)

b1 = 45(4a2
n0+ 1)

2an0(85a2
n0+ 50)

b2 = 90

(85a2
n0+ 50)

b3 = − 90gn0

an0(85a2
n0+ 50)

(17)

which can be readily fed into a computer for a fast and accurate calculation ofs0.
Finally the nth s-state normalized eigenfunction which is proposed for the Gaussian

potential (in equation (2)) is

un0(x) = Nn0(sinhx)(coshx)p0+1/2P (1/2,p0)
n (cosh(2x)) (18)

with

Nn0 =
[

2−p0−1/2(−p0− an0)0(n+ 1)0(−p0− n)
0(n+ 3/2)0(−p0− n− 1/2)

] 1
2

(19)

wherean0 = 2n+ 3/2 andp0 = −
√
s−2

0 + 1
4.

Obviously, in addition to the Gaussian potential, other potentials can be handled in an
analogous way.

Visualization of the results can be achieved by plotting the eigenfunctions obtained
through the present method against those obtained by numerical integration (see figures 1–
3). To be more specific we consider, as an application, a problem of physical interest, namely
that of the binding energy of a3–particle in hypernuclei, in which the self-consistent3–
nuclei potential is approximated by a Gaussian one (with the rigid core model expression
[14] for R:R = r0A 1

3 , A being the mass number of the core nucleus). This is a reasonable
approximation for relatively light hypernuclei. The values of the potential parameters may
be determined by a least-squares fit to known experimental values [14],V0 = 34.16 MeV,
r0 = 1.199 fm.

We further note that a measure of the quality of the achieved approximation is the value
of the integral

In0 =
∫ ∞

0
|unum
n0 (r)− un0(r)|2 dr (20)
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Figure 1. The plot of the adjusted s-state Jacobi eigenfunction (broken curve), withn = 0,
A = 11, against that of the corresponding eigenfunction (full curve) obtained through numerical
integration of the Schrödinger equation.

Figure 2. The plot of the adjusted s-state Jacobi eigenfunction (broken curve), withn = 0,
A = 40, against that of the corresponding eigenfunction (full curve) obtained through numerical
integration of the Schrödinger equation.
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Figure 3. The plot of the adjusted s-state Jacobi eigenfunction (broken curve), withn = 1,
A = 120, against that of the corresponding eigenfunction (full curve) obtained through numerical
integration of the Schrödinger equation.

whereunum
n0 (r) is the corresponding, numerically obtained, normalized eigenfunction. For

various nuclei one obtains:

n A s In0

0 11 0.460 0.0030
0 40 0.358 0.0001
1 120 0.295 0.0032

It is seen that the value ofIn0 decreases rapidly withA so that the heavier the nuclei
the better the approximation, as is also clear from the figures.

In conclusion, the important results of this paper (and to some extent those of [11]) is
that the (HVT) scheme, which is ‘a perturbation theory without a wavefunction’, becomes
capable of providing approximate analytic eigenfunctions for certain states in a simple and
efficient way.
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